题目:
Background
The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans? Problem Find a path such that the knight visits every square once. The knight can start and end on any square of the board.Input The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
Output
The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number. If no such path exist, you should output impossible on a single line.
Sample Input
31 12 34 3
Sample Output
Scenario #1:A1Scenario #2:impossibleScenario #3:A1B3C1A2B4C2A3B1C3A4B2C4 题意: 给你一个p*q的棋盘,跳马在上面的任意一格开始移动,只能走‘日’字,问你能不能经过棋盘上面所有的格子;(百度的题意,明明是说经过所有的格子,有道硬是翻译 成了“找到一条这样的路,骑士每一次都要去一次”),输出要按照字典顺序输出 分析: 深度优先搜索,要经过所有的格子,那就肯定经过(1,1),所以就可以从(1,1)开始搜索; AC代码:
#include<iostream>
#include<cstring>#include<cstdio>using namespace std;int t,p,q,flag;int a[30][30];int step[30][30];int f[8][2]={ {1,-2},{-1,-2},{-2,-1},{2,-1},{-2,1},{2,1},{-1,2},{1,2}};void dfs(int x,int y,int z){ step[z][1]=x; step[z][2]=y; if (z==p*q) { flag=1; return ; }for (int i=0;i<8;i++)
{ int xi=x+f[i][0]; int yi=y+f[i][1]; if (xi>=1&&xi<=p&&yi>=1&&yi<=q&&!a[xi][yi]&&!flag) { a[xi][yi]=1; dfs(xi,yi,z+1); a[xi][yi]=0; } }}
int main(){ cin>>t; for (int i=1;i<=t;i++) { flag=0; scanf("%d%d",&p,&q); memset(a,0,sizeof(a)); memset(step,0,sizeof(step)); a[1][1]=1; dfs(1,1,1); printf("Scenario #%d:\n",i); if (flag==1) { for (int j=1;j<=p*q;j++) printf("%c%d",step[j][2]+'A'-1,step[j][1]); printf("\n"); } else printf("impossible\n"); if (i!=t) printf("\n"); } return 0;}